

TETRAHEDRON LETTERS

Tetrahedron Letters 44 (2003) 1975-1977

Regioselectivity in the reductive ring-opening reaction of 1,2-O-benzylidene sugars

Katsuhiko Suzuki, Hisato Nonaka and Masanori Yamaura*

Department of Environmental Science, Faculty of Science and Engineering, Iwaki Meisei University, 5-5-1 Iino, Chuohdai, Iwaki-shi, Fukushima 970-8551, Japan

Received 16 October 2002; revised 25 November 2002; accepted 20 December 2002

Abstract—Regioselectivity in the ring-opening reaction of 1,2-O-benzylidene sugars was studied. In the reductive ring-opening reaction of 1,2-O-benzylidene derivatives, only a C-O1 bond was cleaved in the case of manno-type, but both the C-O1 and C-O2 bonds were cleaved in the case of gluco-type. © 2003 Elsevier Science Ltd. All rights reserved.

The reductive ring-opening reaction of benzylidene acetal has been used frequently for regioselective protection and/or transformation of the diol function. Generally, one of the two C-O bonds in benzylidene acetal can be selectively cleaved, and the direction of cleavage is dependent on steric and electronic factors as well as on the nature of the cleavage reagent.1 A number of methods for the reduction of benzylidene acetal have been developed and the 4,6-O-benzylidene acetal of hexopyranosides has been useful precursors of the carbohydrate chemistry.²⁻¹¹ However, lack of an efficient method for the synthesis of 1,2-O-benzylidene derivatives in sufficient amount to use for reaction had caused a delay of the development of the ring-opening reaction. To aid research around the 1,2-O-benzylidene sugars, we recently reported an improved and practical synthesis of 1,2-O-benzylidene and 1,2-O-p-methoxybenzylidene hexopyranoses that most aldoses can apply.¹² We thought that 1,2-O-benzylidene sugars, synthesized easily from the corresponding 2-benzoyloxy glycosyl halides by the reductive cyclization, are attractive as the stable derivative protecting and/or activating the anomeric position selectively. But, the general nature of the 1,2-O-benzylidene derivatives had not yet been known well.

We now report the first attempt to open the ring of 1,2-O-benzylidene sugars under the reductive condition. In this communication, regioselectivity in the reaction

Keywords: benzylidene; reduction; ring-opening reaction; protecting

of two types of 1,2-O-benzylidene sugars, manno- and gluco-type, was studied.

Two types of 1,2-O-benzylidene derivatives 1-4,13 manno- and gluco-type, were used as substrates for three reductive ring-opening conditions, Et₃SiH-TFA in the CH₂Cl₂ system⁷ and BH₃·THF-TMSOTf in the THF system^{5,6} and NaBH₃CN-TMSCl in the CH₃CN system.¹⁰ Results of the reductive ring-opening reaction was summarized in Table 1.

Treatment of benzylidene 1 with Et₃SiH in the presence of TFA gave a 2-O-benzylated derivative 5¹⁴ exclusively (entry 1). Although contamination of H₂O was removed with AW-300 (acid washed molecular sieves, 4A), in the use of p-methoxybenzylidene 2 in place of benzylidene 1 as a substrate only a 1,2-OH derivative 6 was obtained and the p-methoxybenzylated compound has not yet been obtained (entry 2). This result suggests that the p-methoxybenzyl group on the reduced product may be unstable in this reaction and/or the handling step. On the other hand, BH₃·THF-TMSOTf in the THF system was successful and gave 2-O-benzyl ether 5 or p-methoxybenzyl ether 7 by the reductive ring-opening reaction of benzylidene 1 or p-methoxybenzylidene 2 (entries 3, 4). The use of NaBH₃CN-TMSCl in the CH₃CN system was also effective for the ring-opening reaction of benzylidene 1 or p-methoxybenzylidene 2 (entries 5, 6). The cleavage of the C-O2 bond was not observed at all under these conditions. These results means that the sterically less hindered anomeric oxygen, which is pointed to the equatorial at manno-type 1,2-O-benzylidene derivatives 1 or 2 having the C1 conformation, reacts with a proton or Lewis acid to give the 2-O-benzyl ether.

^{*} Corresponding author. Tel.: +81-246-29-7158; fax: +81-246-29-0577; e-mail: yamaura@iwakimu.ac.jp

Table 1. Reductive ring-opening reaction of 1,2-O-benzylidene derivatives

R'O OR R'O R'O R'O R'O R'O HO

5: R = Bn, R' = Bz 8: R = Bn, R' = Bz 9: R = Bn, R' = Bz 6: R = H, R' = p - MBz 10: R = H, R' = p - MBz 12: R = p - MBn, R' = p - MBz 11: R = p - MBn, R' = p - MBz

Entry	Substrate	Condition ^a	Temperature	Product (yield %)
1	1	A	rt	5 (84%)
2	2	A	rt	6 (quant.)
3	1	В	0°C–rt	5 (87%)
4	2	В	0°C–rt	7 (90%)
5	1	C	Reflux	5 (92%)
6	2	C	rt	7 (68%)
7	3	A	rt	8 (23%), 9 (70%)
8	4	A	rt	10 (quant.)
9	3	В	0°C–rt	8 (43%), 9 (49%)
10	4	В	0°C	11 (20%), 12 (59%)
11	3	C	Reflux	8 (48%), 9 (43%)
12	4	C	rt	12 (79%)

^a A: Et₃SiH, TFA, AW-300/CH₂Cl₂; B: BH₃THF, TMSOTf, AW-300/THF; C: NaBH₃CN, TMSCl, AW-300/CH₂CN.

In the case of *gluco*-type 1,2-O-benzylidene derivative 3 or p-methoxybenzylidene derivative 4, the regioselectivity of the ring-opening reaction was changed from that of the manno-type. Under the reductive ring-opening reaction of 1,2-O-benzylidene derivatives, only the C-O1 bond was cleaved in the case of manno-type 1 or 2, but both the C-O1 and C-O2 bonds were cleaved in the case of gluco-type 3 or 4. Reaction of benzylidene 3 with Et₃SiH in the presence of TFA gave 2-O-benzyl ether 8¹⁴ with 1-O-benzyl ether 9¹⁴ in the ratio of 23% to 70% (entry 7). The 1,2-OH derivative 10 was obtained in the use of the p-methoxybenzylidene 4 under this condition similarly to manno-type p-methoxybenzylidene 2 (entry 8). Mixtures of 2-O-benzyl ether 8 and 1-O-benzyl ether **9** or 2-*O-p*-methoxybenzyl ether **11** and 1-*O-p*-methoxybenzyl ether 12 were obtained under the reaction using BH₃·THF-TMSOTf in the THF system (entries 9, 10). The NaBH₃CN-TMSCl in the CH₃CN system also converted benzylidene 3 into a mixture of 2-O-benzyl ether 8 and 1-O-benzyl ether 9 (entry 11). Interestingly, 1,2-O-p-methoxybenzylidene derivative 4 gave 1-O-pmethoxybenzyl ether 12 without 2-O-p-methoxybenzyl ether 11 (entry 12).

In the *gluco*-type 1,2-*O*-benzylidene derivatives 3 or 4 having the strain conformation, ^{12,15} the situation around the anomeric or 2-*O* position is different from the *manno*-type, and is the cause of the change in regioselectivity. Whereas it is difficult to estimate the differences of stereoelectronic effect between *manno*-and *gluco*-types, the regioselectivity in the reductive ring-opening reaction of 1,2-*O*-benzylidene or 1,2-*O*-*p*-methoxybenzylidene derivatives appears to be relevant to the steric effect around the anomeric or the 2-*O* position. By detailed studies related to the stereochemistry of the benzylidene position and the solvent effect, more suitable conditions for the regioselective ring-opening reaction of 1,2-*O*-benzylidene derivatives may be developed in the near future.

Thus, the reductive ring-opening reaction of the 1,2-O-benzylidene sugars was demonstrated. The ring-opening products, having a benzyl or p-methoxy-benzyl ether at the anomeric or C-2 position, are promising precursors for the carbohydrate chemistry.

References

- Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; John Wiley & Sons: New York, 1999.
- Liptak, A.; Imure, J.; Harangi, J.; Nanasi, P. Tetrahedron 1982, 38, 3721–3727.
- Galas, J. Adv. Carbohydr. Chem. Biochem. 1981, 39, 71–156.
- 4. Garreg, P. J. Pure App. Chem. 1984, 56, 845-858.
- 5. Johansson, R.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1 1984, 2371–2374.
- Garegg, P. J.; Hultberg, H.; Wallin, S. Carbohydr. Res. 1982, 108, 97–101.
- DeNinno, M. P.; Etienne, J. B.; Duplantier, K. C. Tetrahedron Lett. 1995, 36, 669-672.
- 8. Ek, M.; Garegg, P. J.; Hultberg, H.; Oscarson, S. *J. Carbohydr. Chem.* **1983**, *2*, 305–311.
- Oikawa, M.; Liu, W. C.; Nakai, Y.; Koshida, S.; Fukase, K.; Kusumoto, S. Synlett 1996, 1179–1180.
- 10. Jiang, L.; Chan, T.-H. Tetrahedron Lett. 1998, 39, 355-
- Fukase, K.; Fukase, Y.; Oikawa, M.; Liu, W. C.; Suda, Y.; Kusumoto, S. *Tetrahedron* 1998, 54, 4033–4050.
- 12. Suzuki, K.; Mizuta, T.; Yamaura, M. *J. Carbohydr. Chem.*, submitted for publication.
- 13. The *gluco*-type compounds 3 and 4 are the (R):(S) = 7:3 diastereomeric mixture on the benzylidene position.
- 14. Selected spectral data for ring-opening product **5**: 1 H NMR (CDCl₃) δ 6.12 (dd, 0.85H, $J_{3,4} = J_{4,5} = 9.9$ Hz, H-4 α), 6.01 (dd, 0.15H, $J_{3,4} = J_{4,5} = 9.9$ Hz, H-4 β), 5.78 (dd, 0.85H, $J_{2,3} = 2.9$ Hz, H-3 α), 5.48 (dd, 0.15H, $J_{2,3} = 2.9$ Hz, H-3 β), 5.41 (br s, 0.85H, H-1 α), 5.04 (br d, 0.15H, $J_{1,2} = 11.0$ Hz, H-1 β), 4.93 (d, 0.15H, $J_{1,1} = 11.0$ Hz, benzyl β); 7: 1 H NMR (CDCl₃) δ 6.03 (dd, 0.8H, $J_{3,4} = J_{4,5} = 9.9$ Hz, H-4 α), 5.93 (dd, 0.2H, $J_{3,4} = J_{4,5} = 9.9$ Hz,
- H-4 β), 5.71 (dd, 0.8H, $J_{2,3}$ =2.9 Hz, H-3 α), 5.40 (dd, 0.2H, $J_{2.3} = 2.9$ Hz, H-3 β), 5.38 (br s, 0.8H, H-1 α), 5.01 (br s, 0.2H, H-1 β), 4.85 (d, 0.2H, J=11.0 Hz, benzyl β); 8: ¹H NMR (CDCl₃) δ 5.98 (dd, 0.7H, $J_{2,3} = J_{3,4} = 9.9$ Hz, H-3 α), 5.71 (dd, 0.3H, $J_{2,3}=J_{3,4}=9.9$ Hz, H-3 β), 5.53 $(dd, 0.7H, J_{4.5}=9.9 Hz, H-4\alpha), 5.52 (dd, 0.3H, J_{4.5}=9.9$ Hz, H-4 β), 5.39 (br s, 0.7H, H-1 α), 5.01 (dd, 0.3H, $J_{1.2} = 7.5$, $J_{1.OH} = 5.0$ Hz, H-1 β), 4.85 and 4.70 (each d, 0.6H, J=11.7 Hz, benzyl β), 4.05 (ddd, 0.3H, $J_{5.6a}=3.3$, $J_{5.6b} = 5.1$ Hz, H-5 β), 4.01 (d, 0.3H, OH β), 3.81 (dd, 0.7H, $J_{1,2} = 3.7$ Hz, H-2 α), 3.63 (dd, 0.3H, H-2 β), 3.61 (br s, 0.7H, OH α); 9: ¹H NMR (CDCl₃) δ 5.75 (dd, 1H, $J_{2,3} = J_{3,4} = 9.9 \text{ Hz}, \text{ H-3}$, 5.59 (dd, 1H, $J_{4,5} = 9.9 \text{ Hz}, \text{ H-4}$), 5.15 (d, 1H, $J_{1,2}$ =4.0 Hz, H-1), 4.86 and 4.66 (each d, 2H, J = 11.7 Hz, benzyl), 4.54 (dd, 1H, $J_{5.6a} = 2.6$, $J_{6a,6b} =$ 11.7 Hz, H-6a), 4.43 (dd, 1H, $J_{5.6b} = 5.1$ Hz, H-6b), 4.37 (ddd, 1H, H-5), 3.94 (br s, 1H, H-2), 2.43 (br s, 1H, OH); ¹³C NMR (CDCl₃) δ 97.64 (C-1), 73.96 (C-3), 71.42 (C-2), 70.28 (benzyl), 68.99 (C-4), 68.26 (C-5), 63.00 (C-6); 11: ¹H NMR (CDCl₃) δ 5.88 (dd, 0.7H, $J_{2,3}$ = $J_{3.4}=9.9$ Hz, H-3 α), 5.62 (dd, 0.3H, $J_{2.3}=J_{3.4}=9.9$ Hz, H-3 β), 5.45 (dd, 0.7H, $J_{4,5}$ =9.9 Hz, H-4 α), 5.43 (dd, 0.3H, $J_{4.5} = 9.9$ Hz, H-4 β), 5.32 (br s, 0.7H, H-1 α), 4.98 (dd, 0.3H, $J_{1,2} = 7.7$, $J_{1,OH} = 5.1$ Hz, H-1 β), 4.75 and 4.63 (each d, 0.6H, J=11.7 Hz, benzyl β), 3.57 (dd, 0.3H, H-2β), 3.50 (br s, 0.7H, OHα); **12**: ¹H NMR (CDCl₃) δ 5.67 (dd, 1H, $J_{2,3}9 = J_{3,4} = 9.9$ Hz, H-3), 5.52 (dd, 1H, $J_{4.5}$ =9.9 Hz, H-4), 5.10 (d, 1H, $J_{1.2}$ =4.0 Hz, H-1), 4.78 and 4.57 (each d, 2H, J=11.4 Hz, benzyl), 4.53 (dd, 1H, $J_{5,6a} = 2.9$, $J_{6a,6b} = 12.1$ Hz, H-6a), 4.39 (dd, 1H, $J_{5,6b} = 5.5$ Hz, H-6b), 4.33 (ddd, 1H, H-5), 3.89 (ddd, 1H, $J_{2,OH}$ = 11.0 Hz, H-2), 2.48 (d, 1H, O*H*); 13 C NMR (CDCl₃) δ 97.29 (C-1), 73.74 (C-3), 71.43 (C-2), 69.78 (benzyl), 68.82 (C-4), 68.25 (C-5), 62.92 (C-6).
- Dick, W. E., Jr.; Weisleder, D.; Hodge, J. E. Carbohydr. Res. 1972, 23, 229–242.